다차원 척도법(Multi-Dimensional Scaling)
데이터분석/머신러닝기반
2022. 12. 12. 16:38
여러 대상의 특징 사이 관계에 대한 수치적 자료를 이용하여 유사성에 대한 측정치를 상대적 거리로 구조화하는 방법 2차원 또는 3차원에서의 특정 위치에 관측치를 배치해서 보기 쉽게 척도화 즉, 항목 사이 거리를 기준으로 하는 자료를 이용하여 항목들의 상대적인 위치를 찾고 거리가 가까운 개체들끼리 Group 화 하여 분류할 수 있다. 다차원 척도법 적용 절차 1) 자료 수집: 특성을 측정 2) 유사성, 비유사성 측정: 개체 사이의 거리 측정 3) 공간에서 개체 사이 거리 표현 4) 개체의 상호 위치에 따른 관계가 개체들 사이 비유사성에 적합여부 결정 다차원 척도법의 종류 1) 계량적(전통적) 다차원 척도법(Classical MDS) 숫자 데이터로만 구성. stats패키지의 cmdscale()..